Exercise 63

Prove that f is continuous at a if and only if

$$
\lim _{h \rightarrow 0} f(a+h)=f(a)
$$

Solution

Suppose that f is continuous at a. Then by the definition of continuity,

$$
\lim _{x \rightarrow a} f(x)=f(a)
$$

Make the substitution, $h=x-a$, to get the desired result. Note that as $x \rightarrow a, h \rightarrow 0$.

$$
\lim _{h \rightarrow 0} f(h+a)=f(a)
$$

Suppose instead that

$$
\lim _{h \rightarrow 0} f(h+a)=f(a) .
$$

Make the substitution, $x=h+a$. Note that as $h \rightarrow 0, x \rightarrow a$.

$$
\lim _{x \rightarrow a} f(x)=f(a)
$$

This equation indicates that $f(x)$ is continuous at a. Therefore, f is continuous at a if and only if

$$
\lim _{h \rightarrow 0} f(a+h)=f(a) .
$$

